Nuprl Lemma : rless-ibs

x,y:ℝ.
  ∃s:IBS
   ((x < ⇐⇒ ∃n:ℕ((s n) 1 ∈ ℤ))
   ∧ (∀n:ℕ(((s n) 0 ∈ ℤ (((y < x) ∧ (∀m:ℕ((s m) 0 ∈ ℤ))) ∨ (|x y| ≤ (r(4)/r(n 1)))))))


Proof




Definitions occuring in Statement :  incr-binary-seq: IBS rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q and: P ∧ Q apply: a add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q iff: ⇐⇒ Q implies:  Q prop: incr-binary-seq: IBS subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q or: P ∨ Q nat: rneq: x ≠ y guard: {T} ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top
Lemmas referenced :  rless_ibs_property rless_ibs_wf rless_wf istype-nat istype-int set_subtype_base lelt_wf int_subtype_base rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf real_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_pairFormation_alt isectElimination sqequalRule productIsType functionIsType universeIsType equalityIstype applyEquality setElimination rename intEquality lambdaEquality_alt natural_numberEquality independent_isectElimination baseClosed sqequalBase equalitySymmetry because_Cache unionIsType inhabitedIsType equalityTransitivity productElimination closedConclusion addEquality inrFormation_alt independent_functionElimination unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation

Latex:
\mforall{}x,y:\mBbbR{}.
    \mexists{}s:IBS
      ((x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((s  n)  =  1))
      \mwedge{}  (\mforall{}n:\mBbbN{}.  (((s  n)  =  0)  {}\mRightarrow{}  (((y  <  x)  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((s  m)  =  0)))  \mvee{}  (|x  -  y|  \mleq{}  (r(4)/r(n  +  1)))))))



Date html generated: 2019_10_30-AM-11_25_17
Last ObjectModification: 2019_06_28-PM-01_56_01

Theory : real!vectors


Home Index