Nuprl Lemma : unit-ball-approx0
∀[k:ℕ]. unit-ball-approx(0;k) ≡ Top
Proof
Definitions occuring in Statement : 
unit-ball-approx: unit-ball-approx(n;k), 
nat: ℕ, 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
top: Top, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
top: Top, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
unit-ball-approx: unit-ball-approx(n;k), 
sum: Σ(f[x] | x < k), 
sum_aux: sum_aux(k;v;i;x.f[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
prop: ℙ
Lemmas referenced : 
istype-void, 
unit-ball-approx_wf, 
istype-le, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
mul_bounds_1a, 
istype-top, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
extract_by_obid, 
hypothesis, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
sqequalRule, 
lambdaFormation_alt, 
hypothesisEquality, 
functionExtensionality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
multiplyEquality, 
because_Cache, 
independent_pairEquality, 
axiomEquality, 
applyEquality
Latex:
\mforall{}[k:\mBbbN{}].  unit-ball-approx(0;k)  \mequiv{}  Top
Date html generated:
2019_10_30-AM-11_28_04
Last ObjectModification:
2019_07_30-AM-11_25_27
Theory : real!vectors
Home
Index