Nuprl Lemma : Cauchy-Schwarz-not-strict
∀[n:ℕ]. ∀[x,y:ℝ^n].  (¬(|x⋅y| < (||x|| * ||y||)) 
⇐⇒ ∀i,j:ℕn.  (((x j) * (y i)) = ((x i) * (y j))))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
rless: x < y
, 
rabs: |x|
, 
req: x = y
, 
rmul: a * b
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
int_seg_wf, 
not_wf, 
exists_wf, 
rneq_wf, 
rmul_wf, 
all_wf, 
req_wf, 
Cauchy-Schwarz-strict, 
rless_wf, 
rabs_wf, 
dot-product_wf, 
real-vec-norm_wf, 
iff_wf, 
real-vec_wf, 
nat_wf, 
req_witness, 
not-rneq, 
rneq_functionality, 
req_weakening, 
nat_plus_properties, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
applyEquality, 
independent_functionElimination, 
voidElimination, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
impliesLevelFunctionality, 
isect_memberFormation, 
independent_pairEquality, 
isect_memberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
unionElimination, 
imageElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (\mneg{}(|x\mcdot{}y|  <  (||x||  *  ||y||))  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i,j:\mBbbN{}n.    (((x  j)  *  (y  i))  =  ((x  i)  *  (y  j))))
Date html generated:
2017_10_03-AM-10_53_00
Last ObjectModification:
2017_06_19-PM-04_20_29
Theory : reals
Home
Index