Nuprl Lemma : arith-geom-mean-inequality-simple

x:{t:ℝr0 ≤ t} . ∀y:ℝ.  ((r(2) y) ≤ (x^2 y^2))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  radd-preserves-rleq rmul_wf int-to-real_wf radd_wf rnexp_wf real_wf set_wf rleq_wf false_wf le_wf rsub_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rnexp2-nonneg req_functionality radd_functionality req_weakening rnexp2 rleq_functionality req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis setElimination rename because_Cache hypothesisEquality productElimination independent_isectElimination sqequalRule lambdaEquality dependent_set_memberEquality independent_pairFormation minusEquality dependent_functionElimination computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x:\{t:\mBbbR{}|  r0  \mleq{}  t\}  .  \mforall{}y:\mBbbR{}.    ((r(2)  *  x  *  y)  \mleq{}  (x\^{}2  +  y\^{}2))



Date html generated: 2017_10_03-AM-10_46_13
Last ObjectModification: 2017_07_28-AM-08_19_40

Theory : reals


Home Index