Nuprl Lemma : arith-geom-mean-inequality-simple
∀x:{t:ℝ| r0 ≤ t} . ∀y:ℝ.  ((r(2) * x * y) ≤ (x^2 + y^2))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rnexp: x^k1
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
radd-preserves-rleq, 
rmul_wf, 
int-to-real_wf, 
radd_wf, 
rnexp_wf, 
real_wf, 
set_wf, 
rleq_wf, 
false_wf, 
le_wf, 
rsub_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rnexp2-nonneg, 
req_functionality, 
radd_functionality, 
req_weakening, 
rnexp2, 
rleq_functionality, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
minusEquality, 
dependent_functionElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x:\{t:\mBbbR{}|  r0  \mleq{}  t\}  .  \mforall{}y:\mBbbR{}.    ((r(2)  *  x  *  y)  \mleq{}  (x\^{}2  +  y\^{}2))
Date html generated:
2017_10_03-AM-10_46_13
Last ObjectModification:
2017_07_28-AM-08_19_40
Theory : reals
Home
Index