Nuprl Lemma : ifun_subtype_subinterval

[I,J:{J:Interval| icompact(J)} ].  {f:I ⟶ℝifun(f;I)}  ⊆{f:J ⟶ℝifun(f;J)}  supposing J ⊆ 


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) subinterval: I ⊆  icompact: icompact(I) rfun: I ⟶ℝ interval: Interval uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] sq_stable: SqStable(P) implies:  Q squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subinterval: I ⊆  iff: ⇐⇒ Q rev_implies:  Q rbetween: x≤y≤z icompact: icompact(I) ifun: ifun(f;I) real-fun: real-fun(f;a;b) top: Top cand: c∧ B guard: {T}
Lemmas referenced :  rfun_subtype ifun_wf sq_stable__icompact rfun_wf subinterval_wf set_wf interval_wf icompact_wf left-endpoint_wf i-member-compact rbetween_wf right-endpoint_wf rleq_weakening_equal icompact-endpoints-rleq member_rccint_lemma rleq_transitivity rleq_wf req_wf real_wf i-member_wf rccint_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality setElimination thin rename dependent_set_memberEquality hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesis independent_isectElimination sqequalRule dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination setEquality axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation lambdaFormation productElimination promote_hyp voidElimination voidEquality productEquality

Latex:
\mforall{}[I,J:\{J:Interval|  icompact(J)\}  ].    \{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}    \msubseteq{}r  \{f:J  {}\mrightarrow{}\mBbbR{}|  ifun(f;J)\}    supposing  J  \msubseteq{}  I 



Date html generated: 2016_10_26-AM-09_48_58
Last ObjectModification: 2016_08_22-AM-11_38_04

Theory : reals


Home Index