Nuprl Lemma : inf-rleq

[A:Set(ℝ)]. ∀b,c:ℝ.  (inf(A)  (b ≤ ⇐⇒ ∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ A) ∧ ((x e) ≤ c))))))


Proof




Definitions occuring in Statement :  inf: inf(A) b rset-member: x ∈ A rset: Set(ℝ) rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q inf: inf(A) b member: t ∈ T prop: rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B uimplies: supposing a exists: x:A. B[x] cand: c∧ B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top guard: {T} rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) squash: T lower-bound: lower-bound(A;b) rge: x ≥ y
Lemmas referenced :  rless_wf int-to-real_wf rleq_wf le_witness_for_triv rset-member_wf rsub_wf inf_wf real_wf rset_wf radd-preserves-rless radd_wf rminus_wf itermSubtract_wf itermAdd_wf itermMinus_wf itermVar_wf rless_functionality req_weakening req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma rless_transitivity1 rleq_weakening_rless rleq_functionality rleq-iff-all-rless sq_stable__rleq rleq-implies-rleq rleq_functionality_wrt_implies rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination natural_numberEquality hypothesis hypothesisEquality inhabitedIsType sqequalRule lambdaEquality_alt dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies functionIsType productIsType because_Cache independent_functionElimination dependent_pairFormation_alt approximateComputation int_eqEquality isect_memberEquality_alt voidElimination setIsType setElimination rename imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[A:Set(\mBbbR{})]
    \mforall{}b,c:\mBbbR{}.    (inf(A)  =  b  {}\mRightarrow{}  (b  \mleq{}  c  \mLeftarrow{}{}\mRightarrow{}  \mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  A)  \mwedge{}  ((x  -  e)  \mleq{}  c))))))



Date html generated: 2019_10_29-AM-10_40_17
Last ObjectModification: 2019_04_19-PM-03_59_11

Theory : reals


Home Index