Nuprl Lemma : inf-rless

[A:Set(ℝ)]. ∀b,c:ℝ.  (inf(A)  (b < ⇐⇒ ∃x:ℝ((x ∈ A) ∧ (x < c))))


Proof




Definitions occuring in Statement :  inf: inf(A) b rset-member: x ∈ A rset: Set(ℝ) rless: x < y real: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q inf: inf(A) b member: t ∈ T prop: rev_implies:  Q exists: x:A. B[x] uimplies: supposing a cand: c∧ B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top lower-bound: lower-bound(A;b) guard: {T}
Lemmas referenced :  rless_wf rset-member_wf inf_wf real_wf rset_wf rsub_wf rless-implies-rless int-to-real_wf radd_wf itermSubtract_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 itermAdd_wf real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma rless_transitivity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule productIsType inhabitedIsType dependent_functionElimination independent_functionElimination natural_numberEquality because_Cache independent_isectElimination dependent_pairFormation_alt approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}b,c:\mBbbR{}.    (inf(A)  =  b  {}\mRightarrow{}  (b  <  c  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:\mBbbR{}.  ((x  \mmember{}  A)  \mwedge{}  (x  <  c))))



Date html generated: 2019_10_29-AM-10_40_34
Last ObjectModification: 2019_04_22-PM-01_14_49

Theory : reals


Home Index