Nuprl Lemma : ireal-approx_functionality

[j:ℕ]. ∀[M:ℕ+]. ∀[z:ℤ]. ∀[x,y:ℝ].  j-approx(x;M;z) ⇐⇒ j-approx(y;M;z) supposing y


Proof




Definitions occuring in Statement :  ireal-approx: j-approx(x;M;z) req: y real: nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q ireal-approx: j-approx(x;M;z) prop: rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A false: False nat: nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ireal-approx_wf less_than'_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rabs_wf itermMultiply_wf int_term_value_mul_lemma nat_plus_wf req_wf real_wf nat_wf rleq_functionality rabs_functionality rsub_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache applyEquality setElimination rename independent_isectElimination inrFormation independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality multiplyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[j:\mBbbN{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[z:\mBbbZ{}].  \mforall{}[x,y:\mBbbR{}].    j-approx(x;M;z)  \mLeftarrow{}{}\mRightarrow{}  j-approx(y;M;z)  supposing  x  =  y



Date html generated: 2018_05_22-PM-01_58_53
Last ObjectModification: 2017_10_25-PM-03_33_59

Theory : reals


Home Index