Nuprl Lemma : nth_tl-partition

I:Interval
  (icompact(I)
   (∀a:ℝ. ∀p:partition(I). ∀i:ℕ||p||.  ((a p[i])  (nth_tl(i 1;p) ∈ partition([a, right-endpoint(I)])))))


Proof




Definitions occuring in Statement :  partition: partition(I) icompact: icompact(I) rccint: [l, u] right-endpoint: right-endpoint(I) interval: Interval req: y real: select: L[n] length: ||as|| nth_tl: nth_tl(n;as) int_seg: {i..j-} all: x:A. B[x] implies:  Q member: t ∈ T add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T partition: partition(I) uall: [x:A]. B[x] int_seg: {i..j-} partitions: partitions(I;p) and: P ∧ Q guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: iff: ⇐⇒ Q icompact: icompact(I) cand: c∧ B frs-non-dec: frs-non-dec(L) int_iseg: {i...j} true: True subtype_rel: A ⊆B le: A ≤ B uiff: uiff(P;Q) rev_implies:  Q left-endpoint: left-endpoint(I) endpoints: endpoints(I) rccint: [l, u] outl: outl(x) pi1: fst(t) nat: less_than': less_than'(a;b) subtract: m right-endpoint: right-endpoint(I) pi2: snd(t) last: last(L) sq_type: SQType(T) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] bfalse: ff sorted-by: sorted-by(R;L)
Lemmas referenced :  nth_tl_wf real_wf int_seg_properties length_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf partitions_wf rccint_wf right-endpoint_wf rccint-icompact req_wf select_wf decidable__le int_seg_wf partition_wf icompact_wf interval_wf less_than_wf squash_wf true_wf length_nth_tl itermAdd_wf int_term_value_add_lemma le_wf iff_weakening_equal itermSubtract_wf int_term_value_subtract_lemma lelt_wf subtract_wf add-member-int_seg2 rleq_wf select_nth_tl select-nth_tl false_wf subtype_rel_list top_wf add-zero rleq_transitivity rleq_weakening subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf add_functionality_wrt_eq frs-non-dec-sorted-by list-cases stuck-spread base_wf length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma last_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality introduction extract_by_obid isectElimination hypothesis hypothesisEquality addEquality natural_numberEquality productElimination independent_functionElimination dependent_functionElimination unionElimination imageElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache applyEquality equalityTransitivity equalitySymmetry productEquality imageMemberEquality baseClosed universeEquality instantiate cumulativity promote_hyp hypothesis_subsumption

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  \mforall{}p:partition(I).  \mforall{}i:\mBbbN{}||p||.
                ((a  =  p[i])  {}\mRightarrow{}  (nth\_tl(i  +  1;p)  \mmember{}  partition([a,  right-endpoint(I)])))))



Date html generated: 2017_10_03-AM-09_42_48
Last ObjectModification: 2017_07_28-AM-07_57_22

Theory : reals


Home Index