Nuprl Lemma : r-list-sum_functionality

[L1,L2:ℝ List].  r-list-sum(L1) r-list-sum(L2) supposing (||L1|| ||L2|| ∈ ℤ) ∧ (∀i:ℕ||L1||. (L1[i] L2[i]))


Proof




Definitions occuring in Statement :  r-list-sum: r-list-sum(L) req: y real: select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) le: A ≤ B decidable: Dec(P) subtype_rel: A ⊆B less_than': less_than'(a;b) less_than: a < b squash: T uiff: uiff(P;Q) r-list-sum: r-list-sum(L) cand: c∧ B true: True subtract: m iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than req_witness intformeq_wf int_formula_prop_eq_lemma real_wf list-cases length_of_nil_lemma stuck-spread istype-base req_weakening r-list-sum_wf nil_wf int_seg_wf int_seg_properties product_subtype_list colength-cons-not-zero subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma length_of_cons_lemma le_weakening2 length_wf non_neg_length decidable__lt itermAdd_wf int_term_value_add_lemma cons_wf istype-nat colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le list_wf decidable__equal_int subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_wf add-is-int-iff false_wf reduce_cons_lemma radd_functionality req_wf select_wf add-associates add-swap add-commutes zero-add squash_wf less_than_wf istype-universe add-subtract-cancel true_wf select_cons_tl subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType equalityTransitivity equalitySymmetry applyLambdaEquality productElimination isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination because_Cache baseClosed productIsType equalityIstype sqequalBase functionIsType promote_hyp hypothesis_subsumption instantiate addEquality applyEquality dependent_set_memberEquality_alt imageElimination baseApply closedConclusion intEquality pointwiseFunctionality hyp_replacement productEquality imageMemberEquality universeEquality

Latex:
\mforall{}[L1,L2:\mBbbR{}  List].
    r-list-sum(L1)  =  r-list-sum(L2)  supposing  (||L1||  =  ||L2||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  (L1[i]  =  L2[i]))



Date html generated: 2019_10_29-AM-10_20_23
Last ObjectModification: 2019_09_18-PM-05_14_17

Theory : reals


Home Index