Nuprl Lemma : r2-circle-circle
∀a,b,c,d:ℝ^2. ∀p:{p:ℝ^2| ab=ap} . ∀q:{q:ℝ^2| cd=cq} . ∀x:{x:ℝ^2| cp=cx ∧ (¬(c ≠ x ∧ x ≠ d ∧ (¬c-x-d)))} .
∀y:{y:ℝ^2| aq=ay ∧ (¬(a ≠ y ∧ y ≠ b ∧ (¬a-y-b)))} .
  (a ≠ c 
⇒ (∃u,v:{p:ℝ^2| ab=ap ∧ cd=cp} . ((x ≠ d ∧ y ≠ b) 
⇒ (r2-left(u;c;a) ∧ r2-left(v;a;c)))))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
real-vec-sep: a ≠ b
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rv-circle-circle-lemma3', 
real-vec-sep_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
r2-left_wf, 
rv-congruent_wf, 
rv-between_wf, 
real-vec_wf, 
rv-non-strict-between-iff, 
rv-Tsep, 
real-vec-sep-symmetry, 
rv-between-symmetry, 
real-vec-dist-be, 
real-vec-dist_wf, 
radd_wf, 
radd-preserves-rless, 
rminus_wf, 
int-to-real_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermVar_wf, 
rless_functionality, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt, 
sqequalRule, 
independent_pairFormation, 
productIsType, 
universeIsType, 
isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
functionIsType, 
setIsType, 
inhabitedIsType, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
int_eqEquality
Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.  \mforall{}p:\{p:\mBbbR{}\^{}2|  ab=ap\}  .  \mforall{}q:\{q:\mBbbR{}\^{}2|  cd=cq\}  .  \mforall{}x:\{x:\mBbbR{}\^{}2| 
                                                                                                                cp=cx  \mwedge{}  (\mneg{}(c  \mneq{}  x  \mwedge{}  x  \mneq{}  d  \mwedge{}  (\mneg{}c-x-d)))\}  .
\mforall{}y:\{y:\mBbbR{}\^{}2|  aq=ay  \mwedge{}  (\mneg{}(a  \mneq{}  y  \mwedge{}  y  \mneq{}  b  \mwedge{}  (\mneg{}a-y-b)))\}  .
    (a  \mneq{}  c  {}\mRightarrow{}  (\mexists{}u,v:\{p:\mBbbR{}\^{}2|  ab=ap  \mwedge{}  cd=cp\}  .  ((x  \mneq{}  d  \mwedge{}  y  \mneq{}  b)  {}\mRightarrow{}  (r2-left(u;c;a)  \mwedge{}  r2-left(v;a;c)))))
Date html generated:
2019_10_30-AM-08_55_53
Last ObjectModification:
2018_12_11-AM-10_54_26
Theory : reals
Home
Index