Nuprl Lemma : r2-circle-circle

a,b,c,d:ℝ^2. ∀p:{p:ℝ^2| ab=ap} . ∀q:{q:ℝ^2| cd=cq} . ∀x:{x:ℝ^2| cp=cx ∧ (c ≠ x ∧ x ≠ d ∧ c-x-d)))} .
y:{y:ℝ^2| aq=ay ∧ (a ≠ y ∧ y ≠ b ∧ a-y-b)))} .
  (a ≠  (∃u,v:{p:ℝ^2| ab=ap ∧ cd=cp} ((x ≠ d ∧ y ≠ b)  (r2-left(u;c;a) ∧ r2-left(v;a;c)))))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] nat: real-vec-sep: a ≠ b rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False iff: ⇐⇒ Q subtype_rel: A ⊆B rev_implies:  Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  rv-circle-circle-lemma3' real-vec-sep_wf nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le r2-left_wf rv-congruent_wf rv-between_wf real-vec_wf rv-non-strict-between-iff rv-Tsep real-vec-sep-symmetry rv-between-symmetry real-vec-dist-be real-vec-dist_wf radd_wf radd-preserves-rless rminus_wf int-to-real_wf itermSubtract_wf itermAdd_wf itermMinus_wf itermVar_wf rless_functionality req_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation_alt sqequalRule independent_pairFormation productIsType universeIsType isectElimination dependent_set_memberEquality_alt natural_numberEquality setElimination rename unionElimination independent_isectElimination approximateComputation lambdaEquality_alt isect_memberEquality_alt voidElimination because_Cache functionIsType setIsType inhabitedIsType applyEquality equalityTransitivity equalitySymmetry int_eqEquality

Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.  \mforall{}p:\{p:\mBbbR{}\^{}2|  ab=ap\}  .  \mforall{}q:\{q:\mBbbR{}\^{}2|  cd=cq\}  .  \mforall{}x:\{x:\mBbbR{}\^{}2| 
                                                                                                                cp=cx  \mwedge{}  (\mneg{}(c  \mneq{}  x  \mwedge{}  x  \mneq{}  d  \mwedge{}  (\mneg{}c-x-d)))\}  .
\mforall{}y:\{y:\mBbbR{}\^{}2|  aq=ay  \mwedge{}  (\mneg{}(a  \mneq{}  y  \mwedge{}  y  \mneq{}  b  \mwedge{}  (\mneg{}a-y-b)))\}  .
    (a  \mneq{}  c  {}\mRightarrow{}  (\mexists{}u,v:\{p:\mBbbR{}\^{}2|  ab=ap  \mwedge{}  cd=cp\}  .  ((x  \mneq{}  d  \mwedge{}  y  \mneq{}  b)  {}\mRightarrow{}  (r2-left(u;c;a)  \mwedge{}  r2-left(v;a;c)))))



Date html generated: 2019_10_30-AM-08_55_53
Last ObjectModification: 2018_12_11-AM-10_54_26

Theory : reals


Home Index