Nuprl Lemma : r2-left-sep

a,b,c:ℝ^2.  (r2-left(a;b;c)  b ≠ c)


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) real-vec-sep: a ≠ b real-vec: ^n all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T rv-pos-angle: rv-pos-angle(n;a;b;c) uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: iff: ⇐⇒ Q or: P ∨ Q real-vec-dist: d(x;y) real-vec-sep: a ≠ b subtype_rel: A ⊆B uimplies: supposing a rge: x ≥ y guard: {T}
Lemmas referenced :  r2-left-pos-angle zero-rleq-rabs dot-product_wf false_wf le_wf real-vec-sub_wf rmul-is-positive real-vec-norm_wf real-vec-sep-symmetry real-vec-dist-nonneg r2-left_wf real-vec_wf int-to-real_wf rabs_wf rmul_wf real-vec-dist_wf rless_functionality_wrt_implies rleq_weakening_equal rless_transitivity1 rless_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation because_Cache productElimination unionElimination applyEquality independent_isectElimination voidElimination

Latex:
\mforall{}a,b,c:\mBbbR{}\^{}2.    (r2-left(a;b;c)  {}\mRightarrow{}  b  \mneq{}  c)



Date html generated: 2017_10_03-AM-11_54_03
Last ObjectModification: 2017_08_11-PM-10_38_50

Theory : reals


Home Index