Nuprl Lemma : rabs-diff-rdiv
∀[a,b,c,d,x,y:ℝ].
  (c ≠ r0 
⇒ d ≠ r0 
⇒ (|a - b| ≤ x) 
⇒ (|(r1/c) - (r1/d)| ≤ y) 
⇒ (|(a/c) - (b/d)| ≤ ((|a| * y) + (|(r1/d)| * x))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rabs-diff-rmul, 
rdiv_wf, 
int-to-real_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rneq_wf, 
le_witness_for_triv, 
real_wf, 
rmul_wf, 
radd_wf, 
rminus_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermConstant_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rleq_functionality, 
req_transitivity, 
rabs_functionality, 
radd_functionality, 
rminus-rdiv, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
because_Cache, 
approximateComputation, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[a,b,c,d,x,y:\mBbbR{}].
    (c  \mneq{}  r0
    {}\mRightarrow{}  d  \mneq{}  r0
    {}\mRightarrow{}  (|a  -  b|  \mleq{}  x)
    {}\mRightarrow{}  (|(r1/c)  -  (r1/d)|  \mleq{}  y)
    {}\mRightarrow{}  (|(a/c)  -  (b/d)|  \mleq{}  ((|a|  *  y)  +  (|(r1/d)|  *  x))))
Date html generated:
2019_10_29-AM-10_21_50
Last ObjectModification:
2019_07_05-PM-00_18_35
Theory : reals
Home
Index