Nuprl Lemma : radd-list-linearity
∀[T:Type]. ∀[x,y:T ⟶ ℝ]. ∀[a,b:ℝ]. ∀[L:T List].
  (radd-list(map(λk.((a * x[k]) + (b * y[k]));L)) = ((a * radd-list(map(λk.x[k];L))) + (b * radd-list(map(λk.y[k];L)))))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
radd-list: radd-list(L)
, 
real: ℝ
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
req_wf, 
radd-list_wf-bag, 
map_wf, 
real_wf, 
radd_wf, 
rmul_wf, 
list-subtype-bag, 
subtype_rel_self, 
list_wf, 
map_nil_lemma, 
radd_list_nil_lemma, 
map_cons_lemma, 
req_witness, 
int-to-real_wf, 
req_weakening, 
cons_wf, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
rmul-zero-both, 
radd-zero-both, 
req_transitivity, 
radd-list-cons, 
rmul_functionality, 
rmul-distrib, 
rmul_comm, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
functionEquality, 
universeEquality, 
natural_numberEquality, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[L:T  List].
    (radd-list(map(\mlambda{}k.((a  *  x[k])  +  (b  *  y[k]));L))
    =  ((a  *  radd-list(map(\mlambda{}k.x[k];L)))  +  (b  *  radd-list(map(\mlambda{}k.y[k];L)))))
Date html generated:
2017_10_02-PM-07_15_48
Last ObjectModification:
2017_07_28-AM-07_20_41
Theory : reals
Home
Index