Nuprl Lemma : radd-list-rabs

L:ℝ List. (|radd-list(L)| ≤ radd-list(map(λx.|x|;L)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| radd-list: radd-list(L) real: map: map(f;as) list: List all: x:A. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top subtype_rel: A ⊆B uimplies: supposing a istype: istype(T) not: ¬A false: False absval: |i| less_than': less_than'(a;b) le: A ≤ B nat: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} true: True prop: squash: T rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q)
Lemmas referenced :  list_induction real_wf radd_list_nil_lemma map_nil_lemma istype-void map_cons_lemma list_wf rleq_wf rabs_wf radd-list_wf-bag list-subtype-bag map_wf bag_qinc false_wf nat_wf absval_wf rleq-int iff_weakening_equal int-to-real_wf rabs-int true_wf squash_wf radd_wf cons_wf rleq_weakening_equal uimplies_transitivity rleq_functionality_wrt_implies radd_functionality_wrt_rleq r-triangle-inequality rleq_functionality rabs_functionality radd-list-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis sqequalRule independent_functionElimination dependent_functionElimination isect_memberEquality_alt voidElimination rename universeIsType because_Cache hypothesisEquality lambdaEquality_alt applyEquality independent_isectElimination lambdaFormation independent_pairFormation setElimination productElimination universeEquality baseClosed imageMemberEquality natural_numberEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality inhabitedIsType equalityIsType1

Latex:
\mforall{}L:\mBbbR{}  List.  (|radd-list(L)|  \mleq{}  radd-list(map(\mlambda{}x.|x|;L)))



Date html generated: 2019_10_29-AM-09_38_30
Last ObjectModification: 2018_11_10-PM-01_29_31

Theory : reals


Home Index