Nuprl Lemma : real-from-approx_wf
∀[a:ℝ]. ∀[x:k:ℕ+ ⟶ {v:ℝ| |v - a| ≤ (r1/r(k))} ].  (real-from-approx(n.x[n]) ∈ {b:ℝ| b = a} )
Proof
Definitions occuring in Statement : 
real-from-approx: real-from-approx(n.x[n]), 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
converges-to: lim n→∞.x[n] = y, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
so_apply: x[s], 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtract: n - m, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
rneq: x ≠ y, 
guard: {T}, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
real-from-approx: real-from-approx(n.x[n])
Lemmas referenced : 
nat_plus_subtype_nat, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-swap, 
le-add-cancel, 
less_than_wf, 
set_wf, 
real_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
sq_stable__rleq, 
equal_wf, 
le_wf, 
nat_wf, 
nat_plus_wf, 
rleq-int-fractions, 
decidable__le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
req-from-converges, 
req_inversion, 
req_wf, 
cauchy-limit_wf, 
converges-cauchy-witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
lambdaFormation, 
functionExtensionality, 
because_Cache, 
addEquality, 
setElimination, 
thin, 
rename, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
inrFormation, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
setEquality, 
axiomEquality, 
multiplyEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[x:k:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{v:\mBbbR{}|  |v  -  a|  \mleq{}  (r1/r(k))\}  ].    (real-from-approx(n.x[n])  \mmember{}  \{b:\mBbbR{}|  b  =  a\}  )
Date html generated:
2018_05_22-PM-01_51_07
Last ObjectModification:
2017_10_25-AM-00_00_51
Theory : reals
Home
Index