Nuprl Lemma : real-vec-norm-equal-iff

[n:ℕ]. ∀[x,y:ℝ^n].  uiff(||x|| ||y||;x⋅y⋅y)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec: ^n req: y nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q iff: ⇐⇒ Q rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] subtype_rel: A ⊆B real:
Lemmas referenced :  iff_weakening_uiff req_wf real-vec-norm_wf dot-product_wf rnexp_wf false_wf le_wf rleq_wf int-to-real_wf real-vec-norm-eq-iff req_witness uiff_wf real-vec_wf nat_wf real-vec-norm-nonneg less_than'_wf rsub_wf real_wf nat_plus_wf req_functionality req_weakening real-vec-norm-squared
Rules used in proof :  cut addLevel sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin independent_pairFormation isect_memberFormation introduction independent_isectElimination extract_by_obid isectElimination hypothesisEquality hypothesis productEquality because_Cache dependent_set_memberEquality natural_numberEquality sqequalRule lambdaFormation independent_functionElimination cumulativity independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality dependent_functionElimination voidElimination applyEquality setElimination rename minusEquality axiomEquality universeEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(||x||  =  ||y||;x\mcdot{}x  =  y\mcdot{}y)



Date html generated: 2017_10_03-AM-10_49_37
Last ObjectModification: 2017_06_08-PM-06_52_00

Theory : reals


Home Index