Nuprl Lemma : real-vec-norm-equal-iff
∀[n:ℕ]. ∀[x,y:ℝ^n].  uiff(||x|| = ||y||;x⋅x = y⋅y)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
req: x = y
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
Lemmas referenced : 
iff_weakening_uiff, 
req_wf, 
real-vec-norm_wf, 
dot-product_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rleq_wf, 
int-to-real_wf, 
real-vec-norm-eq-iff, 
req_witness, 
uiff_wf, 
real-vec_wf, 
nat_wf, 
real-vec-norm-nonneg, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
req_functionality, 
req_weakening, 
real-vec-norm-squared
Rules used in proof : 
cut, 
addLevel, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productEquality, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaFormation, 
independent_functionElimination, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(||x||  =  ||y||;x\mcdot{}x  =  y\mcdot{}y)
Date html generated:
2017_10_03-AM-10_49_37
Last ObjectModification:
2017_06_08-PM-06_52_00
Theory : reals
Home
Index