Nuprl Lemma : rinv_preserves_rless

a,b:ℝ.  ((r0 < a)  (a < b)  ((r1/b) < (r1/a)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q)
Lemmas referenced :  rmul_preserves_rless rdiv_wf rless_wf int-to-real_wf real_wf rmul_wf rless_transitivity2 rleq_weakening_rless rinv_wf2 rless_functionality req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_functionality rinv-as-rdiv req_weakening rmul-rinv rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache isectElimination independent_isectElimination sqequalRule hypothesis inrFormation independent_functionElimination productElimination hypothesisEquality natural_numberEquality computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}a,b:\mBbbR{}.    ((r0  <  a)  {}\mRightarrow{}  (a  <  b)  {}\mRightarrow{}  ((r1/b)  <  (r1/a)))



Date html generated: 2017_10_03-AM-08_36_41
Last ObjectModification: 2017_07_28-AM-07_29_37

Theory : reals


Home Index