Nuprl Lemma : rleq-iff-bdd

[x,y:ℝ].  (x ≤ ⇐⇒ ∃B:ℕ. ∀n:ℕ+((x n) ≤ ((y n) B)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: nat_plus: + nat: uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a add: m
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T exists: x:A. B[x] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False real: rev_implies:  Q uiff: uiff(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B sq_exists: x:A [B[x]] int_upper: {i...} ge: i ≥  nat_plus: + less_than: a < b squash: T
Lemmas referenced :  rleq-iff4 decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le nat_plus_wf rleq_wf rleq-iff-not-rless rless_wf le_witness_for_triv istype-nat real_wf rless-iff2 regular-less-iff istype-less_than nat_properties intformand_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_term_value_add_lemma int_term_value_var_lemma nat_plus_properties add-is-int-iff intformless_wf int_formula_prop_less_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination dependent_pairFormation_alt dependent_set_memberEquality_alt natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType functionIsType applyEquality setElimination rename addEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType productIsType int_eqEquality because_Cache imageElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}B:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.  ((x  n)  \mleq{}  ((y  n)  +  B)))



Date html generated: 2019_10_29-AM-09_38_21
Last ObjectModification: 2019_02_13-PM-04_09_00

Theory : reals


Home Index