Nuprl Lemma : rleq-iff-bdd
∀[x,y:ℝ].  (x ≤ y 
⇐⇒ ∃B:ℕ. ∀n:ℕ+. ((x n) ≤ ((y n) + B)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
add: n + m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
real: ℝ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
sq_exists: ∃x:A [B[x]]
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
rleq-iff4, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_wf, 
rleq_wf, 
rleq-iff-not-rless, 
rless_wf, 
le_witness_for_triv, 
istype-nat, 
real_wf, 
rless-iff2, 
regular-less-iff, 
istype-less_than, 
nat_properties, 
intformand_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
nat_plus_properties, 
add-is-int-iff, 
intformless_wf, 
int_formula_prop_less_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
functionIsType, 
applyEquality, 
setElimination, 
rename, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
productIsType, 
int_eqEquality, 
because_Cache, 
imageElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}B:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.  ((x  n)  \mleq{}  ((y  n)  +  B)))
Date html generated:
2019_10_29-AM-09_38_21
Last ObjectModification:
2019_02_13-PM-04_09_00
Theory : reals
Home
Index