Nuprl Lemma : rmin-int
∀[a,b:ℤ].  (rmin(r(a);r(b)) = r(imin(a;b)))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
req: x = y
, 
int-to-real: r(n)
, 
imin: imin(a;b)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
int-to-real: r(n)
, 
rmin: rmin(x;y)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
nat: ℕ
Lemmas referenced : 
req-iff-bdd-diff, 
rmin_wf, 
int-to-real_wf, 
imin_wf, 
trivial-bdd-diff, 
real_wf, 
nat_plus_wf, 
req_witness, 
equal_wf, 
squash_wf, 
true_wf, 
imin_unfold, 
iff_weakening_equal, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
mul_preserves_lt, 
mul_nat_plus, 
less_than_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
mul_preserves_le, 
decidable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
lambdaFormation, 
independent_functionElimination, 
intEquality, 
isect_memberEquality, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
multiplyEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
voidElimination, 
cumulativity, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    (rmin(r(a);r(b))  =  r(imin(a;b)))
Date html generated:
2017_10_03-AM-08_28_51
Last ObjectModification:
2017_07_28-AM-07_25_32
Theory : reals
Home
Index