Nuprl Lemma : rmin-int

[a,b:ℤ].  (rmin(r(a);r(b)) r(imin(a;b)))


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) req: y int-to-real: r(n) imin: imin(a;b) uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B real: all: x:A. B[x] int-to-real: r(n) rmin: rmin(x;y) implies:  Q squash: T prop: nat_plus: + true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b less_than': less_than'(a;b) nat:
Lemmas referenced :  req-iff-bdd-diff rmin_wf int-to-real_wf imin_wf trivial-bdd-diff real_wf nat_plus_wf req_witness equal_wf squash_wf true_wf imin_unfold iff_weakening_equal le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf mul_preserves_lt mul_nat_plus less_than_wf itermMultiply_wf itermConstant_wf int_term_value_mul_lemma int_term_value_constant_lemma mul_preserves_le decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination applyEquality lambdaEquality setElimination rename sqequalRule lambdaFormation independent_functionElimination intEquality isect_memberEquality because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality multiplyEquality natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate voidElimination cumulativity int_eqEquality voidEquality independent_pairFormation computeAll dependent_set_memberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (rmin(r(a);r(b))  =  r(imin(a;b)))



Date html generated: 2017_10_03-AM-08_28_51
Last ObjectModification: 2017_07_28-AM-07_25_32

Theory : reals


Home Index