Nuprl Lemma : rminus-rmin
∀[x,y:ℝ].  (-(rmin(x;y)) = rmax(-(x);-(y)))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
req: x = y
, 
rminus: -(x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
subtract: n - m
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
absval: |i|
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nat_plus: ℕ+
, 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
true: True
, 
real: ℝ
, 
implies: P 
⇒ Q
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
rminus: -(x)
, 
all: ∀x:A. B[x]
, 
req: x = y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
zero-mul, 
add-mul-special, 
add-commutes, 
minus-minus, 
minus-one-mul, 
iff_weakening_equal, 
subtype_rel_self, 
imax_unfold, 
imin_unfold, 
minus_functionality_wrt_eq, 
subtract_wf, 
true_wf, 
squash_wf, 
nat_wf, 
absval_wf, 
false_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
decidable__le, 
top_wf, 
assert_of_lt_int, 
lt_int_wf, 
absval_unfold, 
int_formula_prop_wf, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMinus_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
less_than_wf, 
nat_plus_properties, 
le_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_le_int, 
eqtt_to_assert, 
bool_wf, 
le_int_wf, 
ifthenelse_wf, 
imin_wf, 
real_wf, 
rmax_wf, 
rmin_wf, 
rminus_wf, 
req_witness, 
nat_plus_wf
Rules used in proof : 
universeEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalAxiom, 
lessCases, 
multiplyEquality, 
addEquality, 
independent_pairFormation, 
voidEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
dependent_set_memberEquality, 
voidElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
natural_numberEquality, 
minusEquality, 
intEquality, 
rename, 
setElimination, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x,y:\mBbbR{}].    (-(rmin(x;y))  =  rmax(-(x);-(y)))
Date html generated:
2018_05_22-PM-01_21_06
Last ObjectModification:
2018_05_21-AM-00_06_33
Theory : reals
Home
Index