Nuprl Lemma : rnexp_step

[x:ℝ]. ∀[n:ℕ+].  (x^n (x^n x))


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b real: nat_plus: + uall: [x:A]. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) subtract: m
Lemmas referenced :  req_witness rnexp_wf nat_plus_subtype_nat rmul_wf subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf nat_plus_wf real_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int-to-real_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma req_weakening req_functionality rnexp_unroll int_subtype_base rnexp_zero_lemma rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule dependent_set_memberEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache independent_functionElimination lambdaFormation equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (x\^{}n  =  (x\^{}n  -  1  *  x))



Date html generated: 2017_10_03-AM-08_31_43
Last ObjectModification: 2017_07_28-AM-07_27_14

Theory : reals


Home Index