Nuprl Lemma : rsqrt-rdiv

x:{x:ℝr0 ≤ x} . ∀y:{x:ℝr0 < x} .  ((rsqrt(x)/rsqrt(y)) rsqrt((x/y)))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rdiv: (x/y) rleq: x ≤ y rless: x < y req: y int-to-real: r(n) real: all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q sq_stable: SqStable(P) implies:  Q squash: T uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  set_wf real_wf rless_wf int-to-real_wf rleq_wf rsqrt-unique rdiv_wf sq_stable__rless rmul_preserves_rleq rmul_wf sq_stable__rleq uiff_transitivity rleq_functionality req_weakening rmul-rdiv-cancel2 rmul-zero-both rsqrt_wf subtype_rel_sets rleq_weakening_rless rsqrt-positive req_wf rsqrt_nonneg rnexp_wf false_wf le_wf req_functionality req_inversion rnexp2 rnexp-rdiv rneq_functionality rsqrt-rnexp-2 rdiv_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality natural_numberEquality hypothesisEquality independent_isectElimination dependent_set_memberEquality setElimination rename because_Cache inrFormation dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination applyEquality setEquality productEquality independent_pairFormation

Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  .  \mforall{}y:\{x:\mBbbR{}|  r0  <  x\}  .    ((rsqrt(x)/rsqrt(y))  =  rsqrt((x/y)))



Date html generated: 2016_10_26-AM-10_10_05
Last ObjectModification: 2016_10_12-PM-09_07_46

Theory : reals


Home Index