Nuprl Lemma : rsqrt-rdiv
∀x:{x:ℝ| r0 ≤ x} . ∀y:{x:ℝ| r0 < x} .  ((rsqrt(x)/rsqrt(y)) = rsqrt((x/y)))
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
set_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
rleq_wf, 
rsqrt-unique, 
rdiv_wf, 
sq_stable__rless, 
rmul_preserves_rleq, 
rmul_wf, 
sq_stable__rleq, 
uiff_transitivity, 
rleq_functionality, 
req_weakening, 
rmul-rdiv-cancel2, 
rmul-zero-both, 
rsqrt_wf, 
subtype_rel_sets, 
rleq_weakening_rless, 
rsqrt-positive, 
req_wf, 
rsqrt_nonneg, 
rnexp_wf, 
false_wf, 
le_wf, 
req_functionality, 
req_inversion, 
rnexp2, 
rnexp-rdiv, 
rneq_functionality, 
rsqrt-rnexp-2, 
rdiv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
setElimination, 
rename, 
because_Cache, 
inrFormation, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
applyEquality, 
setEquality, 
productEquality, 
independent_pairFormation
Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  .  \mforall{}y:\{x:\mBbbR{}|  r0  <  x\}  .    ((rsqrt(x)/rsqrt(y))  =  rsqrt((x/y)))
Date html generated:
2016_10_26-AM-10_10_05
Last ObjectModification:
2016_10_12-PM-09_07_46
Theory : reals
Home
Index