Nuprl Lemma : rv-be-five-segment
∀a,b,c,d,A,B,C,D:ℝ^2.  (a ≠ b ⇒ a_b_c ⇒ A_B_C ⇒ ab=AB ⇒ bc=BC ⇒ ad=AD ⇒ bd=BD ⇒ cd=CD)
Proof
Definitions occuring in Statement : 
rv-be: a_b_c, 
real-vec-sep: a ≠ b, 
rv-congruent: ab=cd, 
real-vec: ℝ^n, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
stable: Stable{P}, 
uimplies: b supposing a, 
or: P ∨ Q, 
rv-be: a_b_c, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rv-congruent: ab=cd, 
guard: {T}, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rv-five-segment, 
false_wf, 
le_wf, 
rv-congruent_wf, 
rv-be_wf, 
real-vec-sep_wf, 
real-vec_wf, 
stable_rv-congruent, 
or_wf, 
rv-between_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rv-congruent-preserves-sep, 
not-real-vec-sep-iff-eq, 
rv-congruent_functionality, 
req-vec_weakening, 
req_inversion, 
real-vec-dist_wf, 
rv-congruent-implies-eq, 
rv-between_functionality, 
rv-between-symmetry, 
rv-between-sep, 
not-real-vec-sep-refl, 
req-vec_inversion
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
dependent_functionElimination, 
productElimination, 
applyEquality
Latex:
\mforall{}a,b,c,d,A,B,C,D:\mBbbR{}\^{}2.    (a  \mneq{}  b  {}\mRightarrow{}  a\_b\_c  {}\mRightarrow{}  A\_B\_C  {}\mRightarrow{}  ab=AB  {}\mRightarrow{}  bc=BC  {}\mRightarrow{}  ad=AD  {}\mRightarrow{}  bd=BD  {}\mRightarrow{}  cd=CD)
Date html generated:
2017_10_03-AM-11_32_25
Last ObjectModification:
2017_08_11-PM-06_45_29
Theory : reals
Home
Index