Nuprl Lemma : sq_stable__metric-subspace

[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  SqStable(metric-subspace(X;d;A))


Proof




Definitions occuring in Statement :  metric-subspace: metric-subspace(X;d;A) metric: metric(X) sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] metric-subspace: metric-subspace(X;d;A) member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T strong-subtype: strong-subtype(A;B) cand: c∧ B guard: {T}
Lemmas referenced :  metric_wf istype-universe strong-subtype-iff-respects-equality strong-subtype_wf equal-wf sq_stable__all all_wf meq_wf sq_stable__implies squash_wf sq_stable__and sq_stable__strong-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis instantiate universeEquality lambdaFormation_alt productElimination independent_isectElimination independent_functionElimination independent_pairFormation because_Cache sqequalRule lambdaEquality_alt applyEquality functionEquality equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination imageElimination axiomEquality functionIsTypeImplies isect_memberEquality_alt

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].    SqStable(metric-subspace(X;d;A))



Date html generated: 2019_10_30-AM-06_30_48
Last ObjectModification: 2019_10_02-AM-10_05_42

Theory : reals


Home Index