Nuprl Lemma : Legendre-roots-symmetric
∀[n:ℕ]. ∀[x:ℝ].  uiff(Legendre(n;-(x)) = r0;Legendre(n;x) = r0)
Proof
Definitions occuring in Statement : 
Legendre: Legendre(n;x), 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
nat: ℕ, 
true: True, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
rneq: x ≠ y, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
req_witness, 
Legendre_wf, 
int-to-real_wf, 
req_wf, 
rminus_wf, 
real_wf, 
istype-nat, 
rmul_wf, 
rnexp_wf, 
req_functionality, 
Legendre-rminus, 
req_weakening, 
rmul_preserves_req, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
req-implies-req, 
rsub_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
subtype_base_sq, 
int_subtype_base, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
rless-int, 
rless_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rneq_functionality, 
rnexp-minus-one, 
rmul-zero, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
minusEquality, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
remainderEquality, 
setElimination, 
rename, 
closedConclusion, 
lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
baseClosed, 
sqequalBase, 
unionElimination, 
equalityElimination, 
inrFormation_alt, 
imageMemberEquality, 
dependent_pairFormation_alt, 
promote_hyp, 
inlFormation_alt
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    uiff(Legendre(n;-(x))  =  r0;Legendre(n;x)  =  r0)
Date html generated:
2019_10_30-AM-11_33_47
Last ObjectModification:
2019_01_07-PM-03_17_18
Theory : reals_2
Home
Index