Nuprl Lemma : integral-rsub
∀[a,b:ℝ]. ∀[f,g:{f:[rmin(a;b), rmax(a;b)] ⟶ℝ| ifun(f;[rmin(a;b), rmax(a;b)])} ].
(a_∫-b f[x] - g[x] dx = (a_∫-b f[x] dx - a_∫-b g[x] dx))
Proof
Definitions occuring in Statement :
integral: a_∫-b f[x] dx
,
ifun: ifun(f;I)
,
rfun: I ⟶ℝ
,
rccint: [l, u]
,
rmin: rmin(x;y)
,
rmax: rmax(x;y)
,
rsub: x - y
,
req: x = y
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
set: {x:A| B[x]}
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
rfun: I ⟶ℝ
,
so_apply: x[s]
,
prop: ℙ
,
ifun: ifun(f;I)
,
all: ∀x:A. B[x]
,
top: Top
,
real-fun: real-fun(f;a;b)
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
iff: P
⇐⇒ Q
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
,
squash: ↓T
,
label: ...$L... t
,
subtype_rel: A ⊆r B
,
guard: {T}
,
rev_implies: P
⇐ Q
Lemmas referenced :
integral_functionality,
rsub_wf,
i-member_wf,
rccint_wf,
rmin_wf,
rmax_wf,
real_wf,
left_endpoint_rccint_lemma,
right_endpoint_rccint_lemma,
req_functionality,
rsub_functionality,
req_weakening,
req_wf,
set_wf,
ifun_wf,
rccint-icompact,
rmin-rleq-rmax,
radd_wf,
rmul_wf,
int-to-real_wf,
radd_functionality,
rmul_functionality,
real_term_polynomial,
itermSubtract_wf,
itermVar_wf,
itermAdd_wf,
itermMultiply_wf,
itermConstant_wf,
member_rccint_lemma,
rleq_wf,
real_term_value_const_lemma,
real_term_value_sub_lemma,
real_term_value_var_lemma,
real_term_value_add_lemma,
real_term_value_mul_lemma,
req-iff-rsub-is-0,
req_witness,
integral_wf,
squash_wf,
icompact_wf,
rfun_wf,
interval_wf,
eta_conv,
iff_weakening_equal,
req_transitivity,
integral-radd,
integral-rmul-const
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
setElimination,
rename,
dependent_set_memberEquality,
lambdaEquality,
applyEquality,
hypothesis,
because_Cache,
setEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
lambdaFormation,
independent_functionElimination,
independent_isectElimination,
productElimination,
minusEquality,
natural_numberEquality,
computeAll,
int_eqEquality,
independent_pairFormation,
productEquality,
intEquality,
equalityTransitivity,
equalitySymmetry,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[a,b:\mBbbR{}]. \mforall{}[f,g:\{f:[rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}| ifun(f;[rmin(a;b), rmax(a;b)])\} ].
(a\_\mint{}\msupminus{}b f[x] - g[x] dx = (a\_\mint{}\msupminus{}b f[x] dx - a\_\mint{}\msupminus{}b g[x] dx))
Date html generated:
2017_10_04-PM-10_15_54
Last ObjectModification:
2017_07_28-AM-08_47_50
Theory : reals_2
Home
Index