Nuprl Lemma : MTree-rank_wf
∀T:Type. ∀tr:MultiTree(T). (MTree-rank(tr) ∈ ℕ)
Proof
Definitions occuring in Statement :
MTree-rank: MTree-rank(t)
,
MultiTree: MultiTree(T)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
ext-eq: A ≡ B
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
MTree_Node: MTree_Node(labels;children)
,
MultiTree_size: MultiTree_size(p)
,
pi1: fst(t)
,
pi2: snd(t)
,
so_lambda: λ2x.t[x]
,
less_than: a < b
,
squash: ↓T
,
so_apply: x[s]
,
cand: A c∧ B
,
MTree-rank: MTree-rank(t)
,
MTree_Leaf?: MTree_Leaf?(v)
,
MTree_Node-children: MTree_Node-children(v)
,
MTree_Node-labels: MTree_Node-labels(v)
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
MTree_Leaf: MTree_Leaf(val)
,
l_member: (x ∈ l)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
l_exists: (∃x∈L. P[x])
Lemmas referenced :
non_neg_length,
subtype_rel_list,
imax-list-ub,
length-map,
map_wf,
list_wf,
MultiTree_wf,
nat_wf,
neg_assert_of_eq_atom,
assert-bnot,
bool_subtype_base,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
sum-nat-less,
int_term_value_add_lemma,
itermAdd_wf,
length_wf,
decidable__lt,
list-subtype,
l_member_wf,
select_wf,
length_wf_nat,
sum-nat,
atom_subtype_base,
subtype_base_sq,
assert_of_eq_atom,
eqtt_to_assert,
bool_wf,
eq_atom_wf,
MultiTree-ext,
int_formula_prop_eq_lemma,
intformeq_wf,
lelt_wf,
false_wf,
int_seg_subtype,
decidable__equal_int,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
int_seg_properties,
int_seg_wf,
MultiTree_size_wf,
le_wf,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
isect_memberFormation,
introduction,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
sqequalRule,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
independent_functionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
applyEquality,
because_Cache,
productElimination,
unionElimination,
setEquality,
hypothesis_subsumption,
dependent_set_memberEquality,
promote_hyp,
tokenEquality,
equalityElimination,
instantiate,
cumulativity,
atomEquality,
imageElimination,
equalityEquality,
addEquality,
universeEquality,
equalityUniverse,
levelHypothesis
Latex:
\mforall{}T:Type. \mforall{}tr:MultiTree(T). (MTree-rank(tr) \mmember{} \mBbbN{})
Date html generated:
2016_05_16-AM-08_53_59
Last ObjectModification:
2016_01_17-AM-09_43_03
Theory : C-semantics
Home
Index