Nuprl Lemma : Kripke2a

a:ℕ ⟶ ℕ(is-absolutely-free{i:l}(a)  increasing-sequence(a)  (∀m:ℕ(¬¬(∃n:ℕ((a n) ≥ )))))


Proof




Definitions occuring in Statement :  is-absolutely-free: is-absolutely-free{i:l}(f) increasing-sequence: increasing-sequence(a) nat: ge: i ≥  all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] is-absolutely-free: is-absolutely-free{i:l}(f) uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) ge: i ≥  exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b less_than: a < b squash: T
Lemmas referenced :  not_wf exists_wf nat_wf ge_wf increasing-sequence_wf is-absolutely-free_wf not-quotient-true all_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self decidable__lt nat_properties decidable__le le_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf increasing-sequence-prop1 int_seg_properties le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot subtract_wf add_nat_wf itermConstant_wf itermSubtract_wf int_term_value_constant_lemma int_term_value_subtract_lemma itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma decidable__equal_int ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination introduction extract_by_obid isectElimination sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality setElimination rename functionEquality dependent_functionElimination natural_numberEquality independent_isectElimination independent_pairFormation productElimination unionElimination dependent_pairFormation dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity addEquality applyLambdaEquality imageElimination

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
    (is-absolutely-free\{i:l\}(a)  {}\mRightarrow{}  increasing-sequence(a)  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  ((a  n)  \mgeq{}  m  )))))



Date html generated: 2017_09_29-PM-06_09_30
Last ObjectModification: 2017_04_22-PM-05_32_11

Theory : continuity


Home Index