Nuprl Lemma : gen-bar-rec

P:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕP[n 1;s.m@n])  P[n;s]))  (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f]))  ⇃(P[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) ge: i ≥  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k guard: {T} int_seg: {i..j-} prop: not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a int_upper: {i...} so_apply: x[s] subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2x.t[x] nat: uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] implies:  Q all: x:A. B[x] squash: T isl: isl(x) true: True btrue: tt ifthenelse: if then else fi  assert: b bfalse: ff sq_type: SQType(T) uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q spector-bar-rec: spector-bar-rec(Y;G;H;n;s) bnot: ¬bb it: unit: Unit bool: 𝔹 ext2Baire: ext2Baire(n;f;d) seq-add: s.x@n
Lemmas referenced :  seq-add_wf int_term_value_add_lemma int_formula_prop_not_lemma itermAdd_wf intformnot_wf decidable__le nat_properties equiv_rel_true true_wf quotient_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties isl_wf assert_wf equal_wf unit_wf2 le_wf ext2Baire_wf exists_wf implies-quotient-true subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf nat_wf subtype_rel_dep_function int_upper_subtype_nat int_upper_wf all_wf strong-continuity-rel-unique-pair decidable__equal_int btrue_wf bfalse_wf seq-normalize_wf seq-normalize-equal iff_wf assert_of_le_int le_int_wf iff_imp_equal_bool bool_subtype_base bool_wf subtype_base_sq less_than_wf assert-bnot bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf
Rules used in proof :  cumulativity universeEquality unionElimination addEquality independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation productElimination dependent_pairEquality inlEquality dependent_set_memberEquality productEquality unionEquality functionEquality independent_pairFormation independent_isectElimination natural_numberEquality hypothesisEquality functionExtensionality applyEquality hypothesis because_Cache setElimination isectElimination lambdaEquality sqequalRule thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut rename lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyLambdaEquality hyp_replacement equalitySymmetry equalityTransitivity imageElimination SquashedBarInduction Error :inhabitedIsType,  Error :lambdaFormation_alt,  Error :equalityIstype,  baseClosed imageMemberEquality impliesFunctionality addLevel instantiate promote_hyp equalityElimination

Latex:
\mforall{}P:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  P[n  +  1;s.m@n])  {}\mRightarrow{}  P[n;s]))
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  P[m;f]))
    {}\mRightarrow{}  \00D9(P[0;\mlambda{}x.\mbot{}]))



Date html generated: 2019_06_20-PM-03_07_08
Last ObjectModification: 2019_01_15-PM-03_07_44

Theory : continuity


Home Index