Nuprl Lemma : kripke's-schema-contradicts-squashed-continuity1-rel
(∀A:ℙ. ⇃(∃a:ℕ ⟶ ℕ. (A ⇐⇒ ∃n:ℕ. ((a n) = 1 ∈ ℤ)))) ⇒ (¬(∀A:(ℕ ⟶ ℕ) ⟶ (ℕ ⟶ ℕ) ⟶ ℙ. squashed-continuity1-rel(A)))
Proof
Definitions occuring in Statement : 
squashed-continuity1-rel: squashed-continuity1-rel(A), 
quotient: x,y:A//B[x; y], 
nat: ℕ, 
prop: ℙ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T , 
lelt: i ≤ j < k, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
true: True, 
less_than: a < b, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
int_seg: {i..j-}, 
replace-seq-from: replace-seq-from(s;n;k), 
cons-nat-seq: cons-nat-seq(n;a), 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
shift-seq: shift-seq(c;a), 
squash: ↓T, 
guard: {T}, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
squashed-continuity1-rel: squashed-continuity1-rel(A), 
nat: ℕ, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q
Lemmas referenced : 
less_than_anti-reflexive, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
iff_weakening_equal, 
squash_wf, 
int_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
neg_assert_of_eq_int, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__equal_int, 
int_seg_properties, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
less_than_wf, 
top_wf, 
assert_of_lt_int, 
lt_int_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
replace-seq-from_wf, 
cons-nat-seq_wf, 
le_wf, 
shift-seq_wf, 
subtype_rel_self, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
equal_wf, 
implies-quotient-true, 
false_wf, 
squash-from-quotient, 
equiv_rel_true, 
true_wf, 
equal-wf-T-base, 
iff_wf, 
exists_wf, 
quotient_wf, 
squashed-continuity1-rel_wf, 
nat_wf, 
all_wf
Rules used in proof : 
applyLambdaEquality, 
int_eqReduceFalseSq, 
promote_hyp, 
imageMemberEquality, 
sqequalAxiom, 
isect_memberFormation, 
lessCases, 
int_eqReduceTrueSq, 
equalityElimination, 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
addEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
productElimination, 
voidElimination, 
imageElimination, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
independent_functionElimination, 
rename, 
setElimination, 
dependent_functionElimination, 
baseClosed, 
intEquality, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
hypothesis, 
cumulativity, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
(\mforall{}A:\mBbbP{}.  \00D9(\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1))))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  squashed-continuity1-rel(A)))
Date html generated:
2017_04_20-AM-07_35_56
Last ObjectModification:
2017_04_07-PM-06_39_38
Theory : continuity
Home
Index