Nuprl Lemma : kripke's-schema-contradicts-squashed-continuity1-rel

(∀A:ℙ. ⇃(∃a:ℕ ⟶ ℕ(A ⇐⇒ ∃n:ℕ((a n) 1 ∈ ℤ))))  (∀A:(ℕ ⟶ ℕ) ⟶ (ℕ ⟶ ℕ) ⟶ ℙsquashed-continuity1-rel(A)))


Proof




Definitions occuring in Statement :  squashed-continuity1-rel: squashed-continuity1-rel(A) quotient: x,y:A//B[x; y] nat: prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  nequal: a ≠ b ∈  lelt: i ≤ j < k assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff true: True less_than: a < b uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} replace-seq-from: replace-seq-from(s;n;k) cons-nat-seq: cons-nat-seq(n;a) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  shift-seq: shift-seq(c;a) squash: T guard: {T} false: False less_than': less_than'(a;b) le: A ≤ B squashed-continuity1-rel: squashed-continuity1-rel(A) nat: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T not: ¬A implies:  Q
Lemmas referenced :  less_than_anti-reflexive int_term_value_subtract_lemma itermSubtract_wf subtract_wf iff_weakening_equal squash_wf int_subtype_base int_formula_prop_eq_lemma intformeq_wf neg_assert_of_eq_int int_formula_prop_less_lemma intformless_wf decidable__equal_int int_seg_properties assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert less_than_wf top_wf assert_of_lt_int lt_int_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties replace-seq-from_wf cons-nat-seq_wf le_wf shift-seq_wf subtype_rel_self int_seg_subtype_nat subtype_rel_dep_function int_seg_wf equal_wf implies-quotient-true false_wf squash-from-quotient equiv_rel_true true_wf equal-wf-T-base iff_wf exists_wf quotient_wf squashed-continuity1-rel_wf nat_wf all_wf
Rules used in proof :  applyLambdaEquality int_eqReduceFalseSq promote_hyp imageMemberEquality sqequalAxiom isect_memberFormation lessCases int_eqReduceTrueSq equalityElimination computeAll voidEquality isect_memberEquality int_eqEquality dependent_pairFormation unionElimination addEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality productElimination voidElimination imageElimination independent_pairFormation natural_numberEquality productEquality independent_functionElimination rename setElimination dependent_functionElimination baseClosed intEquality independent_isectElimination because_Cache hypothesisEquality applyEquality functionExtensionality lambdaEquality sqequalRule universeEquality hypothesis cumulativity functionEquality isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
(\mforall{}A:\mBbbP{}.  \00D9(\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1))))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  squashed-continuity1-rel(A)))



Date html generated: 2017_04_20-AM-07_35_56
Last ObjectModification: 2017_04_07-PM-06_39_38

Theory : continuity


Home Index