Nuprl Lemma : kripke's-schema-contradicts-squashed-continuity1-rel
(∀A:ℙ. ⇃(∃a:ℕ ⟶ ℕ. (A 
⇐⇒ ∃n:ℕ. ((a n) = 1 ∈ ℤ)))) 
⇒ (¬(∀A:(ℕ ⟶ ℕ) ⟶ (ℕ ⟶ ℕ) ⟶ ℙ. squashed-continuity1-rel(A)))
Proof
Definitions occuring in Statement : 
squashed-continuity1-rel: squashed-continuity1-rel(A)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T 
, 
lelt: i ≤ j < k
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
true: True
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_seg: {i..j-}
, 
replace-seq-from: replace-seq-from(s;n;k)
, 
cons-nat-seq: cons-nat-seq(n;a)
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
shift-seq: shift-seq(c;a)
, 
squash: ↓T
, 
guard: {T}
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
squashed-continuity1-rel: squashed-continuity1-rel(A)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
less_than_anti-reflexive, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
iff_weakening_equal, 
squash_wf, 
int_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
neg_assert_of_eq_int, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__equal_int, 
int_seg_properties, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
less_than_wf, 
top_wf, 
assert_of_lt_int, 
lt_int_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
replace-seq-from_wf, 
cons-nat-seq_wf, 
le_wf, 
shift-seq_wf, 
subtype_rel_self, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
equal_wf, 
implies-quotient-true, 
false_wf, 
squash-from-quotient, 
equiv_rel_true, 
true_wf, 
equal-wf-T-base, 
iff_wf, 
exists_wf, 
quotient_wf, 
squashed-continuity1-rel_wf, 
nat_wf, 
all_wf
Rules used in proof : 
applyLambdaEquality, 
int_eqReduceFalseSq, 
promote_hyp, 
imageMemberEquality, 
sqequalAxiom, 
isect_memberFormation, 
lessCases, 
int_eqReduceTrueSq, 
equalityElimination, 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
addEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
productElimination, 
voidElimination, 
imageElimination, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
independent_functionElimination, 
rename, 
setElimination, 
dependent_functionElimination, 
baseClosed, 
intEquality, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
hypothesis, 
cumulativity, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
(\mforall{}A:\mBbbP{}.  \00D9(\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1))))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  squashed-continuity1-rel(A)))
Date html generated:
2017_04_20-AM-07_35_56
Last ObjectModification:
2017_04_07-PM-06_39_38
Theory : continuity
Home
Index