Nuprl Lemma : not-decidable-zero-sequence

¬(∀s:ℕ ⟶ ℕ((s x.0) ∈ (ℕ ⟶ ℕ)) ∨ (s x.0) ∈ (ℕ ⟶ ℕ)))))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] not: ¬A or: P ∨ Q lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T or: P ∨ Q uall: [x:A]. B[x] prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False half-squash-stable: half-squash-stable(P) so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b top: Top true: True squash: T bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  nat_wf not_wf equal-wf-T-base strong-continuity2-implies-weak istype-false le_wf sq_stable-implies-half-squash-stable false_wf sq_stable_from_decidable decidable__false implies-quotient-true exists_wf all_wf equal-wf-base-T equal-wf-base int_seg_wf int_subtype_base lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf set_subtype_base lelt_wf intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma subtype_rel_function int_seg_subtype_nat subtype_rel_self less_than_anti-reflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  rename sqequalRule Error :functionIsType,  Error :universeIsType,  cut introduction extract_by_obid hypothesis Error :inhabitedIsType,  hypothesisEquality Error :unionIsType,  Error :equalityIsType3,  thin baseClosed sqequalHypSubstitution isectElimination functionEquality dependent_functionElimination Error :lambdaEquality_alt,  because_Cache unionElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination Error :dependent_set_memberEquality_alt,  natural_numberEquality independent_pairFormation productElimination Error :productIsType,  Error :equalityIsType2,  setElimination Error :equalityIsType4,  applyEquality functionExtensionality voidElimination equalityElimination independent_isectElimination lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isect_memberEquality_alt,  imageMemberEquality imageElimination Error :dependent_pairFormation_alt,  baseApply closedConclusion promote_hyp instantiate cumulativity Error :functionExtensionality_alt,  approximateComputation intEquality int_eqEquality applyLambdaEquality

Latex:
\mneg{}(\mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((s  =  (\mlambda{}x.0))  \mvee{}  (\mneg{}(s  =  (\mlambda{}x.0)))))



Date html generated: 2019_06_20-PM-02_56_57
Last ObjectModification: 2018_10_05-PM-08_21_08

Theory : continuity


Home Index