Nuprl Lemma : assert-deq-all-disjoint

[A:Type]. ∀[eq:EqDecider(A)]. ∀[ass:A List List]. ∀[bs:A List].
  uiff(↑deq-all-disjoint(eq;ass;bs);(∀as∈ass.l_disjoint(A;as;bs)))


Proof




Definitions occuring in Statement :  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) l_disjoint: l_disjoint(T;l1;l2) l_all: (∀x∈L.P[x]) list: List deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T l_all: (∀x∈L.P[x]) all: x:A. B[x] l_disjoint: l_disjoint(T;l1;l2) not: ¬A implies:  Q false: False uall: [x:A]. B[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert-deq-disjoint l_all_functionality assert-bl-all iff_weakening_uiff iff_transitivity assert_witness deq_wf deq-all-disjoint_wf uiff_wf deq-disjoint_wf bl-all_wf assert_wf l_disjoint_wf l_all_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties list_wf select_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut hypothesis sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination productEquality lemma_by_obid isectElimination cumulativity because_Cache setElimination rename independent_isectElimination natural_numberEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll imageElimination setEquality applyEquality universeEquality independent_pairEquality equalityTransitivity equalitySymmetry independent_functionElimination addLevel lambdaFormation

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[ass:A  List  List].  \mforall{}[bs:A  List].
    uiff(\muparrow{}deq-all-disjoint(eq;ass;bs);(\mforall{}as\mmember{}ass.l\_disjoint(A;as;bs)))



Date html generated: 2016_05_14-PM-03_24_08
Last ObjectModification: 2016_01_14-PM-11_22_44

Theory : decidable!equality


Home Index