Nuprl Lemma : assert-deq-all-disjoint
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[ass:A List List]. ∀[bs:A List].
  uiff(↑deq-all-disjoint(eq;ass;bs);(∀as∈ass.l_disjoint(A;as;bs)))
Proof
Definitions occuring in Statement : 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs)
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assert-deq-disjoint, 
l_all_functionality, 
assert-bl-all, 
iff_weakening_uiff, 
iff_transitivity, 
assert_witness, 
deq_wf, 
deq-all-disjoint_wf, 
uiff_wf, 
deq-disjoint_wf, 
bl-all_wf, 
assert_wf, 
l_disjoint_wf, 
l_all_wf, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_wf, 
int_seg_properties, 
list_wf, 
select_wf, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
productEquality, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
imageElimination, 
setEquality, 
applyEquality, 
universeEquality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
addLevel, 
lambdaFormation
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[ass:A  List  List].  \mforall{}[bs:A  List].
    uiff(\muparrow{}deq-all-disjoint(eq;ass;bs);(\mforall{}as\mmember{}ass.l\_disjoint(A;as;bs)))
Date html generated:
2016_05_14-PM-03_24_08
Last ObjectModification:
2016_01_14-PM-11_22_44
Theory : decidable!equality
Home
Index