Nuprl Lemma : assert-bl-all

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  uiff(↑(∀x∈L.P[x])_b;(∀x∈L.↑P[x]))


Proof




Definitions occuring in Statement :  bl-all: (∀x∈L.P[x])_b l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q bl-all: (∀x∈L.P[x])_b all: x:A. B[x] top: Top assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B band: p ∧b q bfalse: ff less_than: a < b squash: T rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_induction uiff_wf assert_wf bl-all_wf l_member_wf l_all_wf list_wf reduce_nil_lemma l_all_nil assert_witness select_wf nil_wf length_of_nil_lemma int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf length_wf true_wf l_all_wf_nil reduce_cons_lemma l_all_cons bool_cases_sqequal cons_wf length_of_cons_lemma add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf band_wf assert_of_band bool_wf assert_elim and_wf equal_wf list-subtype
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity applyEquality functionExtensionality setElimination rename hypothesis setEquality because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation independent_isectElimination natural_numberEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll axiomEquality equalityTransitivity equalitySymmetry lambdaFormation addEquality pointwiseFunctionality promote_hyp imageElimination baseApply closedConclusion baseClosed independent_pairEquality functionEquality universeEquality hyp_replacement dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    uiff(\muparrow{}(\mforall{}x\mmember{}L.P[x])\_b;(\mforall{}x\mmember{}L.\muparrow{}P[x]))



Date html generated: 2016_10_21-AM-10_15_27
Last ObjectModification: 2016_07_12-AM-05_31_45

Theory : list_1


Home Index