Nuprl Lemma : assert-bl-all
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  uiff(↑(∀x∈L.P[x])_b;(∀x∈L.↑P[x]))
Proof
Definitions occuring in Statement : 
bl-all: (∀x∈L.P[x])_b
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
bl-all: (∀x∈L.P[x])_b
, 
all: ∀x:A. B[x]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
band: p ∧b q
, 
bfalse: ff
, 
less_than: a < b
, 
squash: ↓T
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
uiff_wf, 
assert_wf, 
bl-all_wf, 
l_member_wf, 
l_all_wf, 
list_wf, 
reduce_nil_lemma, 
l_all_nil, 
assert_witness, 
select_wf, 
nil_wf, 
length_of_nil_lemma, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
length_wf, 
true_wf, 
l_all_wf_nil, 
reduce_cons_lemma, 
l_all_cons, 
bool_cases_sqequal, 
cons_wf, 
length_of_cons_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
band_wf, 
assert_of_band, 
bool_wf, 
assert_elim, 
and_wf, 
equal_wf, 
list-subtype
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairEquality, 
functionEquality, 
universeEquality, 
hyp_replacement, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    uiff(\muparrow{}(\mforall{}x\mmember{}L.P[x])\_b;(\mforall{}x\mmember{}L.\muparrow{}P[x]))
Date html generated:
2016_10_21-AM-10_15_27
Last ObjectModification:
2016_07_12-AM-05_31_45
Theory : list_1
Home
Index