Nuprl Lemma : filter-list-diff

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L1,L2:T List]. ∀[eq:EqDecider(T)].  (filter(P;L1-L2) filter(P;L1)-filter(P;L2))


Proof




Definitions occuring in Statement :  list-diff: as-bs filter: filter(P;l) list: List deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  list-diff: as-bs top: Top member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] prop: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b bfalse: ff false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B
Lemmas referenced :  filter-sq l_member_wf bnot_wf deq-member_wf bool_wf eqtt_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqff_to_assert assert-bnot assert-deq-member filter_wf5 subtype_rel_dep_function subtype_rel_self set_wf assert_witness assert_wf not_wf member_filter_2 iff_wf band_wf bfalse_wf assert_elim and_wf btrue_neq_bfalse deq_wf list_wf filter-filter iff_transitivity iff_weakening_uiff assert_of_band assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberEquality voidElimination voidEquality sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality lambdaFormation cumulativity hypothesis setElimination rename unionElimination equalityElimination productElimination independent_isectElimination because_Cache dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate independent_functionElimination applyEquality functionExtensionality setEquality independent_pairFormation productEquality addLevel impliesFunctionality andLevelFunctionality impliesLevelFunctionality levelHypothesis dependent_set_memberEquality applyLambdaEquality functionEquality universeEquality isect_memberFormation sqequalAxiom

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L1,L2:T  List].  \mforall{}[eq:EqDecider(T)].
    (filter(P;L1-L2)  \msim{}  filter(P;L1)-filter(P;L2))



Date html generated: 2017_04_17-AM-09_14_58
Last ObjectModification: 2017_02_27-PM-05_20_51

Theory : decidable!equality


Home Index