Nuprl Lemma : list-to-set-filter

[T:Type]. ∀eq:EqDecider(T). ∀P:T ⟶ 𝔹. ∀L:T List.  (list-to-set(eq;filter(P;L)) filter(P;list-to-set(eq;L)))


Proof




Definitions occuring in Statement :  list-to-set: list-to-set(eq;L) filter: filter(P;l) list: List deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  iff: ⇐⇒ Q bfalse: ff bnot: ¬bb assert: b rev_implies:  Q cand: c∧ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma list_to_set_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma list-to-set-cons bool_wf eqtt_to_assert deq-member_wf list-to-set_wf assert-deq-member filter_wf5 subtype_rel_dep_function l_member_wf subtype_rel_self set_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf deq_wf member_filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality equalityElimination setEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.
        (list-to-set(eq;filter(P;L))  \msim{}  filter(P;list-to-set(eq;L)))



Date html generated: 2017_04_17-AM-09_10_07
Last ObjectModification: 2017_02_27-PM-05_18_30

Theory : decidable!equality


Home Index