Nuprl Lemma : fan-wkl!

[T:Type]. ((∃size:ℕ~ ℕsize)  Fan(T)  WKL!(T))


Proof




Definitions occuring in Statement :  alt-wkl!: WKL!(T) altfan: Fan(T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  exists: x:A. B[x] and: P ∧ Q nat: prop: uimplies: supposing a false: False not: ¬A all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe equipollent_wf altfan_wf altunbounded_wf alttree_wf bool_wf int_seg_wf istype-nat altneg_wf altbar_wf istype-void complement-unbounded-tree fan-bar-sep alt-bar-sep-wkl!
Rules used in proof :  universeEquality instantiate Error :productIsType,  natural_numberEquality Error :setIsType,  rename setElimination Error :universeIsType,  dependent_functionElimination Error :inhabitedIsType,  Error :functionIsType,  sqequalRule voidElimination independent_isectElimination independent_functionElimination Error :lambdaFormation_alt,  hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T:Type].  ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  Fan(T)  {}\mRightarrow{}  WKL!(T))



Date html generated: 2019_06_20-PM-02_46_57
Last ObjectModification: 2019_06_07-PM-00_00_05

Theory : fan-theorem


Home Index