Nuprl Lemma : fan-wkl!
∀[T:Type]. ((∃size:ℕ. T ~ ℕsize) 
⇒ Fan(T) 
⇒ WKL!(T))
Proof
Definitions occuring in Statement : 
alt-wkl!: WKL!(T)
, 
altfan: Fan(T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
nat: ℕ
, 
prop: ℙ
, 
uimplies: b supposing a
, 
false: False
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
equipollent_wf, 
altfan_wf, 
altunbounded_wf, 
alttree_wf, 
bool_wf, 
int_seg_wf, 
istype-nat, 
altneg_wf, 
altbar_wf, 
istype-void, 
complement-unbounded-tree, 
fan-bar-sep, 
alt-bar-sep-wkl!
Rules used in proof : 
universeEquality, 
instantiate, 
Error :productIsType, 
natural_numberEquality, 
Error :setIsType, 
rename, 
setElimination, 
Error :universeIsType, 
dependent_functionElimination, 
Error :inhabitedIsType, 
Error :functionIsType, 
sqequalRule, 
voidElimination, 
independent_isectElimination, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[T:Type].  ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  Fan(T)  {}\mRightarrow{}  WKL!(T))
Date html generated:
2019_06_20-PM-02_46_57
Last ObjectModification:
2019_06_07-PM-00_00_05
Theory : fan-theorem
Home
Index