Nuprl Lemma : fan-bar-sep

[T:Type]. (Fan(T)  (∃size:ℕ~ ℕsize)  BarSep(T;T))


Proof




Definitions occuring in Statement :  altbarsep: BarSep(T;S) altfan: Fan(T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  remainder: rem m eq_int: (i =z j) assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 sq_stable: SqStable(P) altubar: uniformBar(X) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) altjbar: jbar(X;Y) so_apply: x[s] nequal: a ≠ b ∈  int_nzero: -o subtype_rel: A ⊆B so_lambda: λ2x.t[x] less_than: a < b nat_plus: + altfan: Fan(T) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k ge: i ≥  int_seg: {i..j-} surject: Surj(A;B;f) biject: Bij(A;B;f) equipollent: B false: False less_than': less_than'(a;b) le: A ≤ B not: ¬A rev_implies:  Q true: True squash: T and: P ∧ Q iff: ⇐⇒ Q altbar: bar(X) prop: guard: {T} sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: member: t ∈ T exists: x:A. B[x] all: x:A. B[x] altbarsep: BarSep(T;S) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  rem_invariant equal_wf less_than_wf iff_weakening_uiff div-cancel2 rem-exact multiply-is-int-iff neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert div_bounds_1 assert_of_lt_int lt_int_wf assert_of_eq_int eqtt_to_assert eq_int_wf remainder_wfa exp_wf4 not-all-finite decidable__assert decidable__exists_int_seg le_weakening2 sq_stable__le int_seg_subtype assert_wf exists_wf decidable__all_fun ext-eq_weakening equipollent_weakening_ext-eq function_functionality_wrt_equipollent_right equipollent_functionality_wrt_equipollent equipollent_inversion equipollent_functionality_wrt_equipollent2 equipollent_same exp_wf2 false_wf add-is-int-iff add_nat_wf equipollent-exp subtype_rel_self nat_wf subtype_rel_function istype-assert assert-b-exists assert_of_bor div-cancel3 int_term_value_add_lemma itermAdd_wf int_term_value_mul_lemma itermMultiply_wf int_seg_properties rem_bounds_1 div_rem_sum istype-false nequal_wf divide_wfa int_seg_subtype_nat divide_wf b-exists_wf bor_wf istype-less_than int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf intformless_wf intformand_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le nat_properties altbar_wf istype-le istype-void iff_weakening_equal istype-int true_wf squash_wf equipollent-zero istype-universe altfan_wf equipollent_wf istype-nat bool_wf int_seg_wf altjbar_wf int_subtype_base subtype_base_sq decidable__equal_int
Rules used in proof :  hyp_replacement functionExtensionality equalityElimination functionEquality baseApply pointwiseFunctionality applyLambdaEquality Error :inrFormation_alt,  addEquality multiplyEquality sqequalBase Error :equalityIstype,  closedConclusion promote_hyp int_eqEquality Error :isect_memberEquality_alt,  Error :dependent_pairFormation_alt,  approximateComputation voidElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination Error :lambdaEquality_alt,  applyEquality Error :inlFormation_alt,  universeEquality Error :productIsType,  sqequalRule Error :functionIsType,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  independent_functionElimination independent_isectElimination intEquality cumulativity isectElimination instantiate unionElimination natural_numberEquality hypothesis because_Cache rename setElimination dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (Fan(T)  {}\mRightarrow{}  (\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  BarSep(T;T))



Date html generated: 2019_06_20-PM-02_46_36
Last ObjectModification: 2019_06_06-PM-01_21_50

Theory : fan-theorem


Home Index