Nuprl Lemma : second-countable-choice

[X:𝕌']. ∀[R:ℕ ⟶ (n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ X) ⟶ ℙ'].
  ((∀n:ℕ. ∃A:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ X. R[n;A])  (∃B:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ X. ∀n:ℕR[n;B_n]))


Proof




Definitions occuring in Statement :  predicate-shift: A_x int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] nat: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] pi1: fst(t) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_upper: {i...} decidable: Dec(P) subtract: m predicate-shift: A_x seq-single: seq-single(t) seq-append: seq-append(n;m;s1;s2) subtype_rel: A ⊆B less_than: a < b true: True squash: T nequal: a ≠ b ∈ 
Lemmas referenced :  all_wf nat_wf exists_wf int_seg_wf equal_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int false_wf le_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies zero-add int_upper_properties decidable__lt intformnot_wf int_formula_prop_not_lemma lelt_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma add-member-int_seg2 intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma add-associates add-swap add-commutes lt_int_wf assert_of_lt_int less_than_wf add-subtract-cancel decidable__equal_int predicate-shift_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis promote_hyp thin sqequalHypSubstitution productElimination instantiate introduction extract_by_obid isectElimination cumulativity sqequalRule lambdaEquality functionEquality natural_numberEquality setElimination rename hypothesisEquality applyEquality functionExtensionality because_Cache universeEquality dependent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination unionElimination equalityElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll hypothesis_subsumption hyp_replacement addEquality minusEquality lessCases sqequalAxiom imageMemberEquality baseClosed imageElimination applyLambdaEquality

Latex:
\mforall{}[X:\mBbbU{}'].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  (n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X)  {}\mrightarrow{}  \mBbbP{}'].
    ((\mforall{}n:\mBbbN{}.  \mexists{}A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X.  R[n;A])  {}\mRightarrow{}  (\mexists{}B:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X.  \mforall{}n:\mBbbN{}.  R[n;B\_n]))



Date html generated: 2017_04_17-AM-09_36_09
Last ObjectModification: 2017_02_27-PM-05_34_25

Theory : fan-theorem


Home Index