Nuprl Lemma : fset-all-filter
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  fset-all({x ∈ s | P[x]};x.P[x])
Proof
Definitions occuring in Statement : 
fset-all: fset-all(s;x.P[x]), 
fset-filter: {x ∈ s | P[x]}, 
fset: fset(T), 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
prop: ℙ, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
guard: {T}, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
fset-all: fset-all(s;x.P[x])
Lemmas referenced : 
deq_wf, 
fset_wf, 
bnot_wf, 
fset-null_wf, 
assert_witness, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
assert_elim, 
member-fset-filter, 
assert_wf, 
fset-member_wf, 
isect_wf, 
uall_wf, 
fset-filter_wf, 
fset-all_wf, 
iff_weakening_uiff, 
fset-all-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
because_Cache, 
independent_isectElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    fset-all(\{x  \mmember{}  s  |  P[x]\};x.P[x])
Date html generated:
2016_05_14-PM-03_41_27
Last ObjectModification:
2016_01_19-AM-10_36_02
Theory : finite!sets
Home
Index