Nuprl Lemma : fset-minimals-antichain
∀[T:Type]
  ∀eq:EqDecider(T). ∀s:fset(fset(T)).  (↑fset-antichain(eq;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); s)))
Proof
Definitions occuring in Statement : 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-antichain: fset-antichain(eq;ac), 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys), 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
f-proper-subset: xs ⊆≠ ys, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
assert-fset-antichain, 
fset-minimals_wf, 
fset_wf, 
f-proper-subset-dec_wf, 
f-proper-subset_wf, 
fset-member_wf, 
deq-fset_wf, 
deq_wf, 
assert_witness, 
fset-antichain_wf, 
member-fset-minimals, 
fset-all-iff, 
bnot_wf, 
assert_wf, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-f-proper-subset-dec
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productElimination, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(fset(T)).
        (\muparrow{}fset-antichain(eq;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  s)))
Date html generated:
2016_05_14-PM-03_47_52
Last ObjectModification:
2015_12_26-PM-06_36_29
Theory : finite!sets
Home
Index