Nuprl Lemma : fset-some-iff-squash
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  uiff(fset-some(s;x.P[x]);↓∃x:T. (x ∈ s ∧ (↑P[x])))
Proof
Definitions occuring in Statement : 
fset-some: fset-some(s;x.P[x]), 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
squash: ↓T, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
fset-some: fset-some(s;x.P[x]), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
exists: ∃x:A. B[x], 
fset: fset(T), 
all: ∀x:A. B[x], 
quotient: x,y:A//B[x; y], 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
fset-member: a ∈ s, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
cand: A c∧ B
Lemmas referenced : 
l_member_wf, 
l_exists_iff, 
assert-deq-member, 
decidable__assert, 
decidable__l_exists, 
set-equal_wf, 
list_wf, 
equal-wf-base, 
list_subtype_fset, 
all_wf, 
not_wf, 
deq_wf, 
bool_wf, 
fset_wf, 
fset-member_wf, 
and_wf, 
exists_wf, 
squash_wf, 
fset-filter_wf, 
fset-null_wf, 
assert_wf, 
fset-some_wf, 
fset-some-iff2
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
introduction, 
independent_isectElimination, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
voidElimination, 
functionEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
cumulativity, 
because_Cache, 
productEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
setElimination, 
rename, 
setEquality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(fset-some(s;x.P[x]);\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x])))
Date html generated:
2016_05_14-PM-03_41_11
Last ObjectModification:
2016_01_14-PM-10_40_59
Theory : finite!sets
Home
Index