Nuprl Lemma : int-prod-1

[n:ℕ]. (1 x < n) 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) nat: uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: int-prod: Π(f[x] x < k) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec-unroll subtract-1-ge-0 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf decidable__equal_int intformnot_wf intformeq_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality promote_hyp instantiate cumulativity Error :equalityIsType1

Latex:
\mforall{}[n:\mBbbN{}].  (\mPi{}(1  |  x  <  n)  =  1)



Date html generated: 2019_06_20-PM-01_18_41
Last ObjectModification: 2018_10_19-PM-00_59_57

Theory : int_2


Home Index