Nuprl Lemma : reject_cons_tl
∀[T:Type]. ∀[a:T]. ∀[as:T List]. ∀[i:ℤ].
  ([a / as]\[i] = [a / as\[i - 1]] ∈ (T List)) supposing ((i ≤ ||as||) and 0 < i)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
reject: as\[i]
, 
cons: [a / b]
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
reject: as\[i]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
le: A ≤ B
, 
false: False
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
le_wf, 
length_wf, 
less_than_wf, 
list_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
reduce_tl_cons_lemma, 
less_than_transitivity1, 
less_than_irreflexivity, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not_functionality_wrt_uiff, 
assert_wf, 
list_ind_cons_lemma, 
cons_wf, 
reject_wf, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
because_Cache, 
intEquality, 
universeEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[as:T  List].  \mforall{}[i:\mBbbZ{}].
    ([a  /  as]\mbackslash{}[i]  =  [a  /  as\mbackslash{}[i  -  1]])  supposing  ((i  \mleq{}  ||as||)  and  0  <  i)
Date html generated:
2019_06_20-PM-00_40_17
Last ObjectModification:
2018_09_26-PM-02_47_36
Theory : list_0
Home
Index