Nuprl Lemma : assert-bl-all-2

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  uiff(↑(∀x∈L.P[x])_b;∀x:T. ((x ∈ L)  (↑P[x])))


Proof




Definitions occuring in Statement :  bl-all: (∀x∈L.P[x])_b l_member: (x ∈ l) list: List assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_apply: x[s] so_lambda: λ2x.t[x] iff: ⇐⇒ Q rev_implies:  Q l_all: (∀x∈L.P[x]) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T subtype_rel: A ⊆B
Lemmas referenced :  list_wf bool_wf bl-all_wf iff_weakening_uiff uiff_wf length_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties list-subtype select_wf l_all_wf l_all_iff assert_wf all_wf assert_witness l_member_wf assert-bl-all
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_pairFormation introduction lambdaFormation sqequalRule lambdaEquality dependent_functionElimination applyEquality dependent_set_memberEquality independent_functionElimination because_Cache cumulativity functionEquality addLevel independent_isectElimination setEquality equalityTransitivity equalitySymmetry setElimination rename unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    uiff(\muparrow{}(\mforall{}x\mmember{}L.P[x])\_b;\mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  (\muparrow{}P[x])))



Date html generated: 2016_05_14-PM-02_09_33
Last ObjectModification: 2016_01_15-AM-08_01_19

Theory : list_1


Home Index