Nuprl Lemma : assert-poly-zero

n:ℕ. ∀p:polynom(n).  (↑poly-zero(n;p) ⇐⇒ ∀l:{l:ℤ List| ||l|| n ∈ ℤ(p@l 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  poly-int-val: p@l polynom: polynom(n) poly-zero: poly-zero(n;p) length: ||as|| list: List nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  squash: T top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  not: ¬A decidable: Dec(P) true: True rev_implies:  Q so_apply: x[s] nat: so_lambda: λ2x.t[x] iff: ⇐⇒ Q false: False bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  assert: b uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  iff_weakening_equal squash_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt nat_properties false_wf not_wf poly-zero-false decidable__equal_int poly-int-val_wf2 equal-wf-T-base all_wf true_wf int_subtype_base list_subtype_base equal-wf-base-T list_wf set_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert eqtt_to_assert bool_wf polynom_subtype_polyform poly-zero_wf nat_wf polynom_wf
Rules used in proof :  imageMemberEquality universeEquality imageElimination computeAll voidEquality isect_memberEquality dependent_set_memberEquality setEquality natural_numberEquality rename setElimination baseClosed closedConclusion baseApply lambdaEquality intEquality independent_pairFormation voidElimination because_Cache independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination sqequalRule applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polynom(n).    (\muparrow{}poly-zero(n;p)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (p@l  =  0))



Date html generated: 2017_04_17-AM-09_05_38
Last ObjectModification: 2017_04_13-PM-01_30_46

Theory : list_1


Home Index