Nuprl Lemma : poly-zero-false

n:ℕ. ∀p:polynom(n).  (¬↑poly-zero(n;p) ⇐⇒ ∃l:{l:ℤ List| ||l|| n ∈ ℤ(p@l 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  poly-int-val: p@l polynom: polynom(n) poly-zero: poly-zero(n;p) length: ||as|| list: List nat: assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) bnot: ¬bb select: L[n] nat_plus: + so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] less_than': less_than'(a;b) squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} polyform-lead-nonzero: polyform-lead-nonzero(n;p) true: True assert: b unit: Unit bool: 𝔹 bfalse: ff guard: {T} sq_type: SQType(T) nat: satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B decidable: Dec(P) ge: i ≥  top: Top cons: [a b] or: P ∨ Q rev_uimplies: rev_uimplies(P;Q) it: nil: [] null: null(as) poly-int-val: p@l nequal: a ≠ b ∈  exists: x:A. B[x] uiff: uiff(P;Q) false: False not: ¬A rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) poly-zero: poly-zero(n;p) polynom: polynom(n) so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  base_wf stuck-spread absval-positive int_term_value_minus_lemma itermMinus_wf top_wf assert-bnot bool_cases_sqequal assert_of_lt_int lt_int_wf sum-unroll mul_bounds_1b exp_step mul_preserves_lt sum_scalar_mult int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff exp_wf4 absval_pos absval-non-neg mul-one mul_bounds_1a mul_preserves_le less_than_transitivity2 exp_wf_nat_plus select_cons_tl int_seg_subtype_nat exp_add absval_mul sum_le le_weakening absval_sum less_than_functionality sum_wf add-subtract-cancel iff_weakening_equal sum_split_first true_wf squash_wf exp_wf2 add-is-int-iff nat_plus_properties nat_plus_wf add_nat_plus spread_cons_lemma decidable__equal_int cons_wf nat_properties false_wf add_nat_wf int_seg_wf int_seg_properties select_wf absval_wf length_wf_nat sum-nat polynom_subtype_polyform reduce_hd_cons_lemma null_cons_lemma uiff_transitivity assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base subtype_base_sq bool_cases poly-int-val_wf2 int_term_value_subtract_lemma itermSubtract_wf subtract_wf null_wf bool_wf bnot_wf le_wf int_formula_prop_less_lemma int_formula_prop_not_lemma intformless_wf intformnot_wf decidable__le int_formula_prop_wf int_term_value_add_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermAdd_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt decidable__lt non_neg_length length_wf le_weakening2 length_of_cons_lemma null_nil_lemma product_subtype_list list-cases nil_wf length_of_nil_lemma neg_assert_of_eq_int set_subtype_base eq_int_wf nat_wf equal-wf-T-base equal-wf-base-T list_wf primrec-wf2 less_than_wf set_wf int_subtype_base list_subtype_base equal-wf-base poly-int-val_wf equal_wf exists_wf poly-zero_wf assert_wf not_wf iff_wf polynom_wf all_wf
Rules used in proof :  minusEquality sqequalAxiom isect_memberFormation lessCases universeEquality multiplyEquality pointwiseFunctionality imageMemberEquality applyLambdaEquality imageElimination addEquality equalityElimination impliesFunctionality cumulativity instantiate computeAll int_eqEquality equalitySymmetry equalityTransitivity voidEquality isect_memberEquality hypothesis_subsumption promote_hyp unionElimination dependent_functionElimination dependent_pairFormation productElimination voidElimination independent_functionElimination independent_pairFormation setEquality natural_numberEquality independent_isectElimination applyEquality baseClosed closedConclusion baseApply intEquality hypothesisEquality dependent_set_memberEquality lambdaEquality sqequalRule hypothesis because_Cache isectElimination sqequalHypSubstitution extract_by_obid introduction setElimination rename thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polynom(n).    (\mneg{}\muparrow{}poly-zero(n;p)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (\mneg{}(p@l  =  0)))



Date html generated: 2017_04_17-AM-09_05_19
Last ObjectModification: 2017_04_13-PM-01_30_01

Theory : list_1


Home Index