Nuprl Lemma : absval_sum

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (|Σ(f[x] x < n)| ≤ Σ(|f[x]| x < n))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) absval: |i| int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} guard: {T} less_than': less_than'(a;b) absval: |i| le: A ≤ B prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q all: x:A. B[x] subtype_rel: A ⊆B nat: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_weakening int-triangle-inequality le_functionality int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt sum_wf equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf iff_transitivity assert_of_eq_int eqtt_to_assert assert_wf int_subtype_base equal-wf-base uiff_transitivity bool_wf eq_int_wf primrec-unroll subtype_rel_self int_seg_subtype subtype_rel_dep_function int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_seg_properties le_wf false_wf primrec0_lemma nat_wf primrec_wf less_than'_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties absval_wf int_seg_wf sum-as-primrec
Rules used in proof :  impliesFunctionality baseClosed closedConclusion baseApply equalityElimination unionElimination applyLambdaEquality dependent_set_memberEquality minusEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality addEquality independent_pairEquality productElimination independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality dependent_pairFormation independent_isectElimination intWeakElimination lambdaFormation hypothesis because_Cache rename setElimination natural_numberEquality functionExtensionality applyEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (|\mSigma{}(f[x]  |  x  <  n)|  \mleq{}  \mSigma{}(|f[x]|  |  x  <  n))



Date html generated: 2017_04_14-AM-09_21_48
Last ObjectModification: 2017_04_13-AM-00_46_41

Theory : int_2


Home Index