Nuprl Lemma : sum_le

[k:ℕ]. ∀[f,g:ℕk ⟶ ℤ].  Σ(f[x] x < k) ≤ Σ(g[x] x < k) supposing ∀x:ℕk. (f[x] ≤ g[x])


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: all: x:A. B[x] implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sum-as-primrec int_seg_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf primrec_wf all_wf le_wf primrec0_lemma false_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma subtype_rel_dep_function int_seg_subtype subtype_rel_self decidable__lt lelt_wf primrec-unroll eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot itermAdd_wf int_term_value_add_lemma equal_wf sum_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality functionExtensionality natural_numberEquality setElimination rename because_Cache hypothesis lambdaFormation intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality addEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality dependent_set_memberEquality unionElimination equalityElimination baseApply closedConclusion baseClosed impliesFunctionality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    \mSigma{}(f[x]  |  x  <  k)  \mleq{}  \mSigma{}(g[x]  |  x  <  k)  supposing  \mforall{}x:\mBbbN{}k.  (f[x]  \mleq{}  g[x])



Date html generated: 2017_04_14-AM-09_20_23
Last ObjectModification: 2017_02_27-PM-03_56_58

Theory : int_2


Home Index