Nuprl Lemma : sum_le
∀[k:ℕ]. ∀[f,g:ℕk ⟶ ℤ].  Σ(f[x] | x < k) ≤ Σ(g[x] | x < k) supposing ∀x:ℕk. (f[x] ≤ g[x])
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
sum-as-primrec, 
int_seg_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
less_than'_wf, 
primrec_wf, 
all_wf, 
le_wf, 
primrec0_lemma, 
false_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
decidable__lt, 
lelt_wf, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal_wf, 
sum_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaFormation, 
intWeakElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
addEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    \mSigma{}(f[x]  |  x  <  k)  \mleq{}  \mSigma{}(g[x]  |  x  <  k)  supposing  \mforall{}x:\mBbbN{}k.  (f[x]  \mleq{}  g[x])
Date html generated:
2017_04_14-AM-09_20_23
Last ObjectModification:
2017_02_27-PM-03_56_58
Theory : int_2
Home
Index