Nuprl Lemma : before_last_or

[T:Type]. ∀L:T List. ∀x:T.  ((x ∈ L)  ((x last(L) ∈ T) ∨ before last(L) ∈ L))


Proof




Definitions occuring in Statement :  l_before: before y ∈ l last: last(L) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q prop: and: P ∧ Q ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top true: True last: last(L) squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b le: A ≤ B uiff: uiff(P;Q)
Lemmas referenced :  decidable__equal_int subtract_wf length_wf l_member_wf list_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf l_before_wf equal_wf squash_wf true_wf select_wf le_wf less_than_wf iff_weakening_equal l_before_select itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__lt lelt_wf intformeq_wf int_formula_prop_eq_lemma last_wf non_null_iff_length subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis isectElimination cumulativity natural_numberEquality unionElimination universeEquality because_Cache independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll inlFormation equalityTransitivity equalitySymmetry applyEquality imageElimination productEquality imageMemberEquality baseClosed independent_functionElimination inrFormation dependent_set_memberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  ((x  =  last(L))  \mvee{}  x  before  last(L)  \mmember{}  L))



Date html generated: 2017_04_17-AM-07_36_31
Last ObjectModification: 2017_02_27-PM-04_10_54

Theory : list_1


Home Index